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The problem of stabilizing unstable (by Earnshaw’s theorem) equilibria of a free charge in an electrostatic field by adding a steady
magnetic field is considered. The additional Lorentz force that thereby arises has a gyroscopic form. An example of the possibility
of stabilization in a rigorous relativistic formulation of the problem is given. Criteria for the stabilization of unstable equilibria of
linearized systems are obtained. The conditions for charge stability in intense magnetic fields are investigated and estimates of
the stabilization probability are given. Some multidimensional analogues of these results are presented. In particular, the problem
of gyroscopic stabilization when the matrix of the gyroscopic forces is degenerate is considered. Some extremal criteria of the
stability of the equilibrium positions are given. © 1997 Elsevier Science Ltd. All rights reserved.

1. EARNSHAW’S THEOREM

We know [1], that the equilibrium of a free charge in any electrostatic field is always unstable (Earnshaw’s
theorem, 1839). Existing proofs are based on a consideration of the equations in variations (see, for
example, {1]). However, one can easily give examples of electrostatic fields which allow of higher-order
discrete symmetries, when the Taylor series of the potential energy begins with terms of any power not
less than the third. Here, a first-approximation analysis may not produce any conclusions regarding the
stability of the equilibrium. The first rigorous and complete proof of Earnshaw’s theorem was given in
[2]. It was pointed out in [3] that Earnshaw’s theorem also holds in the relativistic case. Of course,
linearization of the relativistic equations leads to the ordinary linear Newton’s equations. However, as
was mentioned above, these linear equations become unsuitable for degenerate equilibria. The proof
of the instability of equilibrium uses the property of the harmonicity of the potential and Lyapunov’s
first method for strongly non-linear systems [4].

Earnshaw’s theorem can be extended to pseudo—Riemannian spaces, which are more general than
Minkowski space. Suppose M*is a pseudo-Riemannian space-time with + — — —. We consider a certain
time-like geodesic and in a certain neighbourhood of this we introduce semigeodesic coordinates x;
(0 =i =< 3),xp = ct, in which the pseudo-Riemannian metric has the form

ds* =pcldi* - 3 gjjdx;dx;

i, j=1

The coefficients p and g; depend on x = (xq, . . . , x3). This frame of reference is said to be static if p
and g depend only on the spatial coordinates xl, X3, x3. In spaces with static frames of reference there
are non-trivial steady electric fields (see, for example, [5]). The equations of motion of a charge e and
mass m are obtairied from the variational principle

3f(-mc)ds+ew =0
where  is a 1-form in M*, which specifies a 4-potential of the electromagnetic field. The world lines
of the electron, parametrized by time, satisfy differential equations which generalize the well-known
Poincaré-Minkowski equations. Time-like geodesic spaces M* correspond to positions of equilibrium.

It turns out that all these equilibria are unstable. This generalized Earnshaw theorem is proved by the
method described in [3].
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2. THE POSSIBILITY OF STABILIZING THE EQUILIBRIUM OF
A CHARGE IN A MAGNETIC FIELD

Suppose now that M* is a Minkowski space. The motion of the charge in an electric field E and a
magnetic field H is described by the relativistic equation

‘/——1%? - e(E+%[v, H)) @2.1)

Here v = x is the charge velocity and c is the velocity of light.

We will consider a steady electromagnetic field (E and H are clearly independent of time). The field
E is potential: E = —grad ¢. The magnetic component of the Lorentz force is a gyroscopic force: its
presence has no effect on the conservation of total energy

F=-=mc(c* —v 2)% +¢ 22)

If H = 0, all the equilibria (the stationary points of the potential @) are unstable.

We will give a simple example which describes the possibility of stabilizing unstable equilibria using
a steady magnetic field. We will assume that the electric field E is produced by two similar charges Q,
situated on the x; axis a distance R from the origin of coordinates O. The point O is then an unstable
position of equilibrium. The potential of the electric field is equal to ¢, + ¢_, where

P, = eQ[x,2 + x% +(R¥ x3)2 ]—%
The expansion of the total energy (2.2) is a Maclaurin series has the form
F=m@ul+v}+v})/2-eQ(x} +x3 -2x2)/ R*+...

If eQ > 0 (which we will also assume later), the degree of instability (the Morse index of the function
F at the critical point x = v = 0) is equal to two. If the charges e and Q have opposite signs, the degree
of instability is odd (equal to unity) and by the Kelvin-Chetayev theorem gyroscopic stabilization is
impossible.

We will introduce the magnetic field H = (0, 0, H), H = const, which, of course, satisfies Maxwell’s
equations. Since the kinetic energy and the electromagnetic field are invariant under rotations around
the x; axis, Eqs (2.1) admit of a Noether integral

me( X, —V,X)) + eH eH

= (%% +x3)=m@,x, —v,x)+ 5 (x2 +x2)+...
c

(c? -v} v} —1132)}/2 2c

We will seek Lyapunov’s function in the form of a bundle of integrals F + A®, where A = const.
Choosing A from the condition for this integral to be a minimum we obtain the following rigorous
condition for Lyapunov stability

H2 > 80mc/(eR?)

3. THE CONDITIONS FOR GYROSCOPIC STABILIZATION

We will investigate the problem of the stabilization of unstable equilibria of a charge by a magnetic
field in the linear approximation. Letting, for convenience

eg/m — ¢, eH/imc) - H
the linearized equation (2.1) can be written in the form

By a suitable orthogonal transformation the matrix 4 can be reduced to diagonal form:
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A = diag (ay, ay, a3). Since div E = 0, we have
aj+tay+ay=0 (3.2)
If A # 0, there is at least one negative number among the numbers a,, a; and a3. Then, the equilibrium
x = 0 will be unstable (by Lyapunov’s theorem). This is Earnshaw’s theorem in the non-degenerate
case, when4 = 0 [1].
Taking the above agreements into account, we can write Eqgs (3.1) in the following explicit form
X+ Hyxy — Hyx; +a1x, =0,... (3.3)
The general linear equations of gyroscopic systems with three degrees of freedom can be reduced to

the same form. A specific feature of the problem in question is satisfying (3.2).
We will write the characteristic equation of linear system (3.3), taking (3.2) into account, as follows:

S =2 ot +BAZ 4y =0
o=H +H] +H}, B=aa,+aa,+ay0 +aH? +a,HE +a,H?,
Y = aymay

The equilibrium x = 0 is necessarily stable if the third-degree polynomial fhas three different negative
real roots. This condition is equivalent to the inequalities

B>0, 0<y<op
D=o’p? ~4a’y +13aBy- 4B - 27y* >0 3.4

The first two inequalities guarantee that the roots of the polynomial f lie in the left complex half-plane
(the Hurwitz criterion). The condition D = 0 (where D is the discriminant of the polynomial f) is
equivalent to the roots of the equation f = 0 being real, and if D > 0 they are all different.

Inequalities (3.4) can be represented in a simple geometric form. If y < 0, the degree of instability
is odd and gyrosco;ggc stabilization is impossible. Hence, we will consider the case when y > 0 and put
u = oy’ '3, v = By"*. The conditions of stability (3.4) then take the form

v>0, wv>l, u’vz—4(u3+v3)+18uv—-27>0

The corresponding region in the plane of the parameters u, v is shown in Fig. 1 (it is shown hatched).
Its boundary has one singular point # = v = 3, in the neighbourhood of which this curve looks like a
semicubic parabola. Note that the condition for stability o8 > vy is automatically satisfied by virtue of
the condition that the discriminant D must be positive.

Note that the conditions for the stability of the equilibrium x = 0 of a general gyroscopic system with
three degrees of freedom (3.3) have the same form (3.4) except that the sum @, + a, + a; must be
added to the parameter o.
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4. THE EXTREMAL CRITERION OF STABILITY

The condition for the stability of equilibrium can often be represented as the condition for an
extremum of a certain function, which depends only on the position x. For example, if the potential
energy P = (Ax, x)/2 has a strict minimum at the point x = 0, the equilibrium is stable. Conversely, if
the function P + ([H, x], [H, x])/4 reaches a maximum at x = 0, the equilibrium is unstable {6). Further
results in this area can be found in the reviews [7, 8].

Proposition 1. If y > 0, the equilibrium x = 0 of system (3.3) is stable if and only if the quadratic form
(Bx, x), where

B v%  2my”
B=| v* « 2B (4.1)
20ql}é 28 of+27y

has an absolute minimum at the point x = 0.

In fact, by Sylvester’s criterion, the quadratic form (Bx, x) is positive definite when the diagonal minors
of the matrix B are positive. It remains to verify that these conditions are identical with inequalities
(3.4) when y > 0.

Notes. 1. Conditions (3.4) guarantee that the roots of the characteristic polynomial f are pure imaginary and
different. In the case of muitiple roots the problem of the stability of equilibrium depends on the presence of Jordan
cells. However, multiple roots are only encountered in the exceptional case when D = 0. Conditions (3.4) are the
criterion for the strong stability of the equilibrium x = 0: it remains stable for small changes in the coefficients of
system (3.3).

2. It can be shown that there is a whole family of quadratic forms which satisfy Proposition 1. The sym-
metrical matrix (4.1) generates the simplest of these. However, it is difficult to give a clear mechanical inter-
pretation to these forms. The possibility of extending Proposition 1 to the multidimensional case is discussed in
Section 7.

5. INTENSE MAGNETIC FIELDS

If v = ajasa; < 0, the degree of instability is odd and gyroscopic stabilization is impossible. We will
consider the case when y > 0. We will fix the direction of the magnetic field H and increase its intensity
|H|.

Theorem 1. If the components of the magnetic field satisfy the inequality
L=aH} +a,H? + a;H? >0 (5.1)

the equilibrium of the charge is stable for fairly large values of | H |. If £ < 0, the equilibrium is unstable
for large values of | H |.

In fact, if inequality (5.1) is satisfied, we have B > 0 for fairly large values of | H |. Since a > 0, the
first two mcquahtles in (3.4) are satisfied. In order to prove inequality D > 0 it is sufficient to note that
the term ap? increases more rapidly than any other term as | H | — o. If £ < 0, we have f§ < 0 for
fairly large values of | H |. So in this case the equilibrium is necessarily unstable.

Notes. 1. Inequality (5.1) is also the criterion for the stability of the position of equilibrium of a general linear
system with three degrees of freedom on which large gyroscopic forces act.

2.IfZ=0and A% 0, the equxhbnum of the charge is unstable. In fact, in this case (taking (3.2) into account)
the coefficient B = a,a; — (a; + az) < 0.

We can give the stability condition (5.1) an interpretation in terms of geometric probability (see [9]). We fix the
electric field and we assume that the necessary condition for gyroscopic stabilization is satisfied: the degree of
instability is even. This indicates that there are two negative numbers and one positive number among { the numbers
ay, ay, as. Suppose, for example, that a, < 0,a; < 0,a; > 0.In three—dnnensnonal Euclidean space R® = {H,, H,,
H,} the cone I = 0 intersects the unit sphere 2= {HY + H, + H4 = 1) along two ovals which divide it into
three connected regions. The points S of the two regions containing “poles”—points with coordinates 0, 0, x1,
satisfy condition (5.1). The ratio of the sum of the areas of these regions to the area S (it is equal to 4x) is the
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probability of stabilizing the unstable equilibrium by a randomly chosen magnetic field of greater intensity. The
probability is equal to

1 = & +a _}6
5o | 1-1@ @, a)lde, f=|1+ 1 +ay

0 a, sin @+a, cos’ @

and is expressed in terms of elhptlc functions of a,/a,. Assummg a,/a, = tg o we obtain a function of one variable
a € [0, n/2]. Its graph (Fig. 2) is symmetrical about the point & = /4, at which p takes the value 1-3772 = 0.42...

In the interval [r/4, 11/2] the function p() increases, and its maximum value is p(r/ 2) = 1/2. Hence, the stabilization
probability lies between the values 0.42... and 0.5. It is a minimum in the symmetrical case when a; = a,, which
was considered in Section 2.

6. SOME GENERALIZATIONS

We will consider the problem of the stability of the equilibrium of a linear system with » degrees of
freedom, described by the equations

x +I'x+Ax=0, xeR"; I'"=-TI', A=A, detA#0 (6.1)

We can assume the matrix A4 to be diagonal.

We replace I" by uI" and assume that p is a fairly large positive number. We will investigate what
conditions the matrices A and I' must satisfy for the equilibrium x = 0 to be stable for large values of
p. The stability was established in [10, 11] on the assumption that the matrix 4 is negative (i.c. the
potential energy P (x) = (Ax, x)/2 is negative-definite), while the matrix of the gyroscopic forces I' is
non-degenerate. Since I" = -I"and det " # 0, z is even. In this case the degree of instability is equal
to n and hence is ¢ven. In this case the degree of instability is equal to n and hence is even. Estimates
of the values of the parameter u for which stability of the equilibrium x = 0 occurs were given in [11,
12]. For odd n the matrix I is degenerate, and hence the results obtained in [10, 11] are inapplicable.
When n = 3, Theorem 1 gives the stability criterion.

Suppose ker I' is the kernel of the operator I', which is the set of all x e R" such that I'x = 0. Clearly
ker T is a linear subspace of R”. We can make the factor-space R"/ker I (see, for example, [13])
correspond to this; its elements are classes of vectors from R", which differ by vectors from ker I'. We
know [13], that R"/ker I has the structure of a vector space, and

dimkerT'+dimR" /kerI'=n, dimR" /kerT = rank T

Consequently, the dimension of the factor-space R"/ker I'l8w is always even.
Suppose C is a symmetric matrix. We will compare the following quadratic form with it

(CTx, I'x)=—(I'CTx, x), xeR" (6.2)
P
2.5
" \/
0‘”
0 :r/,, 7/
(- 1
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The value of this form does not change if we add to the vector x any vector of the subspace ker I'. The
quadratic form (6.2) is of course correctly defined in the factor-space R"/ker I'.

Theorem 2. If the restriction on the potentlal energy (Ax X)/2 in the subspace ker T' is a positive-
definite quadratic form, while the form (4™ T, I'x) = (47'z, 2) is negative-definite in R"/ker T, the
equilibrium x = 0 is stable for fairly large values of the parameter p.

We will consider the special case whendetI'# 0. Then kerT =0, and the ﬁrst condition of Theorem
2 can be omitted in view of its triviality. Suppose x = 2. Then the form (47'I'x, Ix) = (472, z) will
be negative-definite. Hence, it follows, in turn, that the potential energy (4z, z)/2 will also be negative-
definite. Hence, Theorem 2 contains the result derived in [11] as a special case (without estimates of
the parameter ).

Note. It is sufficient to verify the property that the quadratic form (47'Tx, I'x) is negative-definite in a certain
subspace R” with dimension n—dim (ker T), transverse to the space ker I'.

A further consequence that we can derive from Theorem 2 is inequality (5.1) as the sufficient condition
for gyroscopic stabilization. When n = 3 the kernel of the operator I'# 0 is one-dimensional and oonsnsts
of vectors parallel to the vector (H;, H,, H3). The value of the potential energy on this vector is Sa, H2P2.
Consequently, the first condition of Theorem 2 gives inequality (5.1). Since y = a;a,a3 > 0, then either
a; > 0 or two of these numbers are negative while one is positive. In the first case the equilibrium x =
0 is stable by Kelvin’ s theorem. We will consider the second case; suppose, for example, 2, < 0, a; <
0, a; > 0. Since Xa,H2 > 0, we have H; # 0. Of course, we can take the x; = 0 plane as a two-dimensional
subspace transverse to ker . The value of the quadratic form (47'Tx, I'x) on the vector ¢, = (1, 0, 0)
from this plane is

H}/a, +H? / ay = (a,H? +a3H32)/(a2a3)<0

since a,H> + asH% > —a,H? = 0 and axa; < 0. It can similarly be proved that this form is negative in
any basis vector e, = (0, 1, 0). Hence, the second condition of Theorem 2 is satisfied.

Proof of Theorem 2. In addition to the energy integral
F=(x, x)/2+(Ax, x)/2
system (6.1) also allows of the integral
d=(A"x, x)/2-(TAx, x)+((E~-TA')x, x)/2
Here E is the identity matrix. We replace I' by uI' and consider the quadratic integral
V=2F-20/p% =(x, x)+(Ax, x)-p%(ATx, Tx)+0@ %)
By the conditions of Theorem 2 the form (47'I'x, I'x) is non-positive and vanishes only in the subspace

ker T, where the form (Ax, x) is positive-definite. Consequently, for fairly large values of p the quadratic
form V will be a positive-definite integral. By Lyapunov’s theorem the state of equilibrium x = 0, x =

0) is stable.
We will indicate one more extension of condition (5.1) in the multidimensional case. Suppose y; =
—y;i are the elements of the matrix of the gyroscopic forces I', 4 = diag(ay, . . . , a,), @ = 2a;4;,. . .4q; ,

Yin1i,» Where the summation is carried out over all subscriptsiy <i; <...< ln_z, not 1dent1cal wnth the
subscripts i, 1 < i,. When n = 3, the quantity o is identical with the left-hand side of inequality (5.1).

Proposition 2. 1f o. < 0, the equilibrium x = 0 is unstable for fairly large values of p.

In fact, in the stable case all the coefficients of the characteristic polynomial must be positive. The
coefficient of A? differs from o by terms which depend only on a;. Hence, if a < 0, this coefficient
becomes negative for sufficiently large p.

Note. The inequality a. > 0 is the criterion for strong stability only when n = 3. For n = 4 we must add one more
inequality to this condition, which relates the coefficients of the matrix of the gyroscopic forces I'.
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7. THE GENERAL FORM OF THE CONDITIONS OF STABILITY
Suppose
FAH=A"+a A" 24 +a, (7.1)
is the characteristic polynomial of the linear system (6.1) without multiple roots. The coefficients
04, . . . , 0 are polynomials of a; and of the elements of the matrix I'. The presence of multiple roots
is equivalent to the discriminant D of polynomial (7.1) vanishing.

The equilibrium x = 0 is stable if and only if all the roots of the polynomial f of the nth degree are
real negative numbers. Consequently, the necessary condition for stability is that the inequalities
o; >0,...,a, > 0should be satisfied. We will assume these conditions to be satisfied.

Suppose z;, . . . , z, are simple roots of the equation f{z) = 0. We will put

S = z," +z§+...+z,':, Sp =R

The numbers s; are expressed in terms of the coefficients o; by the following Newton formulae

Syt SO 500, +mOt, =0, m=n
Syt SO+ 8, 00, =0, m>n

Hence 5, = 0y, 5, = 0%y — 2015, 53 = —0C1 + 3010 — 3, . . . - We will introduce the nth order symmetric
matrix

S0 S o Sy
S 52 Sn

S=
Sp=1 Sn -+ S22

and the quadratic form @®(x) = (Sx, x). Note that D = det §.

Proposition 3. Suppose a; > 0,. .., 0, > 0and D # 0. The equilibrium x = 0 of system (6.1) is stable
if and only if the function ® has a strict minimum at the point x = 0.

Proof. Suppose D # 0. Then the polynomial (7.1) does not have multiple roots. In this case, the
criterion for all the roots of the polynomial f to be real is the condition for the matrix § to be positive-
definite [14]. It remains to use the following result, which follows from Descarte’s rule: the polynomial
(7.1), without complex roots, has n negative roots if and only if all its coefficients are positive.

Notes. 1. Proposition 1 does not follow from Proposition 2, since the condition for the matrix (4.1) to be positive-
definite includes the coefficients a and § being positive.

2. The characteristic polynomial of an autonomous Hamiltonian system, linearized in the neighbourhood of the
equilibrium position, contains only even powers and hence has the form (7.1). Consequently, the conditions for
the stability of the equilibria of Hamiltonian systems with # degrees of freedom reduces to 2n—1 algebraic inequalities.
Of course, not all of these are independent.

Example. When n = 3 we must add the following two conditions to the inequalities o > 0, > 0,y > 0

S0 S
=2(a?-38)>0, D=detS>0

5 5

Note that the first of these is a consequence of the second. Hence, the conditions for strong stability of the
equilibrium position reduces to the already well-known four inequalities: o > 0, > 0,y> 0,D > 0.

I wish to thank V. V. Rumyantsev, Yu. P. Solov’yev and A. V. Karapetyan for useful discussions.
This research was supported financially by the Russian Foundation for Basic Research (96-01-00747).



384 V. V. Kozlov

&> WIN =

o No

REFERENCES

. TAMM, 1. Ye., Principles of the Theory of Electricity. Nauka, Moscow, 1966.
. KOZLOV, V. V,, On a Kelvin problem. Prikl. Mat. Mekh., 1989, 53, 1, 165-167.
. VUJICIC, V. A. and KOZLOV, V. V,, Lyapunov’s problem on stability with respect to specified state functions. Prikl. Mat.

Mekh., 1991, 55, 4, 555-559.
KOZLOV, V. V. and FURTA, S. D., Lyapunov’s first method for strongly non-linear systems. Prikl. Mat. Mekh., 1996, 60, 1,
10-22.

. EDDINGTON, A. S., The Mathematical Theory of Relativity. Cambridge University Press, Cambridge, 1954.

POZHARITSKIL, G. K., The unsteady motion of conservative holonomic systems. Prikl. Mat. Mekh., 1956, 20, 3, 429-433.
KARAPETYAN, A. V.and RUMYANTSEYV, V. V,, The stability of conservative and dissipative systems. Advances in science
and technology. General Mechanics, Vol. 6. Vsesoyuz. Inst. Nauch. Tekhn. Inf.,, Moscow, 1983,

. BULATOVIC, R. M., The stability of linear potentiat gyroscopic systems when the potential energy has a maximum, PrikL

Mat. Mekh., 1997, 61, 3, 385-389.

. KENDALL, M. G. and MORAN, P. A. P, Geometric Probability. Griffin, London, 1963.
. MERKIN, D. R., Gyroscopic Systems. Nauka, Moscow, 1974,

11.
12
13.
14.

LAKHADANOV, V. M,, The stabilization of potential systems. Prikl. Mat. Mekh., 1975, 39, 1, 53-58.

KARAPETYAN, A. V., The problem of gyroscopic stabilization. Teor. Primen. Meh., 1994, 20, 89-93.

HAILMOS, P, Finite Dimensional Vector Spaces. Ann. Math. Stud. No. 7. Princeton University Press, Princeton, NJ, 1942,
GRAVE, D. A, Elements of Higher Aigebra. 1zd. Imper. Univ. sv. Vladimira, Kiev, 1914.

Translated by R.C.G.



