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The problem of stabilizing unstable (by Earmhaw's theorem) equilibria of a free charge in an electrostatic field by adding a steady 
magnetic field is considered. The additional Lorentz force that thereby arises has a gyroscopic form. An example of the poss~ility 
of stabilization in a rigorous relativistic formulation of the problem is given. Criteria for the stabilization of unstable equilibria of 
linearized systems are obtained. The conditions for charge stability in intense magnetic fields are investigated and estimates of 
the stabilization probability are given. Some multidimensional analogues of these resdts are presented. In particular, the problem 
of gyroscopic stabilization when the matrix of the gyroscopic forces is degenerate is considered. Some extremai criteria of the 
stability of the equilibrium positions are given. © 1997 Elsevier Science Ltd. All fights reserved. 

1. E A R N S H A W ' S  T H E O R E M  

We know [1], that the equilibrium of a free charge in any electrostatic fieM is always unstable (Earnshaw's 
theorem, 1839). F.~isting proofs are based on a consideration of the equations in variations (see, for 
example, [1]). However, one can easily give examples of electrostatic fields which allow of higher-order 
discrete symmetries, when the Taylor series of the potential energy begins with terms of any power not 
less than the third. Here, a first-approximation analysis may not produce any conclusions regarding the 
stability of the equilibrium. The first rigorous and complete proof of Earnshaw's theorem was given in 
[2]. It was pointed out in [3] that Earnshaw's theorem also holds in the relativistic ease. Of course, 
linearization of the relativistic equations leads to the ordinary linear Newton's equations. However, as 
was mentioned at,3ve, these linear equations become unsuitable for degenerate equilibria. The proof 
of the instability tff equilibrium uses the property of the harmonicity of the potential and Lyapunov's 
first method for sllrongly non-linear systems [4]. 

Earnshaw's theorem can be extended to pseudo-Riemannian spaces, which are more general than 
Minkowski space. Suppose M ~ is a pseudo-Riemannian space-time with + - - - .  We consider a certain 
time-like geodesic and in a certain neighbourhood of this we introduce semigeodesie coordinates xi 
(0 ~< i ~< 3), x0 = ct, in which the pseudo-Riemannian metric has the form 

ds 2 = lac2dt 2 _ ~ g#dxidx i 
i,j~l 

The coefficients p arid g# depend on x = (Xo,. . . ,  x3). This frame of reference is said to be static if g 
and g depend only on the spatial coordinates xt, x2, x3. In spaces with static frames of reference there 
are non-trivial steady electric fields (see, for example, [5]). The equations of motion of a charge e and 
mass m are obtairted from the variational principle 

8 f (-mc )ds +em = 0 

where m is a 1-form in M 4, which specifies a 4-potential of the electromagnetic field. The world lines 
of the electron, parametrized by time, satisfy differential equations which generalize the well-known 
Poincart-Minkowski equations. Time-like geodesic spaces M ~ correspond to positions of equilibrium. 
It turns out that all these equilibria are unstable. This generalized Earnshaw theorem is proved by the 
method described in [3]. 
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2. THE POSSIBILITY OF STAB IL IZ ING THE E Q U I L I B R I U M  OF 
A C H A R G E  IN A M A G N E T I C  FIELD 

Suppose now that 214 4 is a Minkowski space. The motion of the charge in an electric field E and a 
magnetic field H is described by the relativistic equation 

( mY l=e(E+l[v' H])-v / (2.1) 
1 2 c 2 c 

Here v = x is the charge velocity and c is the velocity of light. 
We will consider a steady electromagnetic field (E and H are clearly independent of time). The field 

E is potential: E = --grad 9. The magnetic component of the Lorentz force is a gyroscopic force: its 
presence has no effect on the conservation of total energy 

F = -mc(c  2 - v  2)y2 + 9 (2.2) 

If H = 0, all the equilibria (the stationary points of the potential q~) are unstable. 
We will give a simple example which describes the possibility of stabilizing unstable equilibria using 

a steady magnetic field. We will assume that the electric field E is produced by two similar charges Q, 
situated on the x3 axis a distance R from the origin of coordinates O. The point O is then an unstable 
position of equilibrium. The potential of the electric field is equal to 9+ + 9-, where 

q~+ =eQ[x 2 +x22 +(R::I: x3)2] -~2 
The expansion of the total energy (2.2) is a Maclaurin series has the form 

F = m ( v  2 +v 2 + v ~ ) 1 2 - e Q ( x  2 + x 2 -2x2)1R3+. . .  

If eQ > 0 (which we will also assume later), the degree of instability (the Morse index of the function 
F at the critical point x = v = 0) is equal to two. If the charges e and Q have opposite signs, the degree 
of instability is odd (equal to unity) and by the Kelvin-Chetayev theorem gyroscopic stabilization is 
impossible. 

We will introduce the magnetic field H = (0, 0, H), H = const, which, of course, satisfies Maxwell's 
equations. Since the kinetic energy and the electromagnetic field are invariant under rotations around 
the x3 axis, Eqs (2.1) admit of a Noether integral 

. =  mc(v lx2-v2x l )  +_~__(x 2 + x2)=m(vlx2-v2xl)+~---(x21 + x2)+... 

We will seek Lyapunov's function in the form of a bundle of integrals F + ktb, where X = const. 
Choosing X from the condition for this integral to be a minimum we obtain the following rigorous 
condition for Lyapunov stability 

H 2 > 8Qmc2/(eR 3) 

3. THE C O N D I T I O N S  FOR G Y R O S C O P I C  STABILIZATION 

We will investigate the problem of the stabilization of unstable equilibria of a charge by a magnetic 
field in the linear approximation. Letting, for convenience 

ev~m ---> ~, ei-I/(mc) -~ it  

the linearized equation (2.1) can be written in the form 

x = - H / a t ÷ I x ,  HI; ~0=(Ax, x)/2, 

By a suitable orthogonal transformation the matrix A 

H=(Ht, /-/2, H3) (3.1) 

can be reduced to diagonal form: 
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A = diag (al, a2, a3). Since div E = 0, we have 

at + a2 + a3 = 0 (3.2) 

IrA ;~ 0, there is at least one negative number among the numbers al, a2 and a 3. Then, the equilibrium 
x = 0 will be unstable (by Lyapunov's theorem). This is Earnshaw's theorem in the non-degenerate 
case, whenA ~ 0 [1]. 

Taking the above agreements into account, we can write Eqs (3.1) in the following explicit form 

xi + H~x~ - ~ x 2  ÷ amx, = 0 . . . .  (3.3) 

The general lineax equations of gyroscopic systems with three degrees of freedom can be reduced to 
the same form. A specific feature of the problem in question is satisfying (3.2). 

We will write the, characteristic equation of linear system (3.3), taking (3.2) into account, as follows: 

tg =/']? 4"]'/1 4"H 2, 1~ a: ilia 2 4"a2t13 4-¢13a ' ÷alH? 4"a2H 2 4"a3 H2, 

"I " ala2a.~ 

The equilibrium x = 0 is necessarily stable if the third-degree polynomialfhas three different negative 
real roots. This condition is equivalent to the inequalities 

~ > 0 .  0 < ¥ < e l ~  

D = et21~ 2 - 4ct3¥ + i ~ t l ~ -  41~ 3 - 27¥ 2 > 0 (3.4) 

The fLrst two inequalities guarantee that the roots of the polynomialflie in the left complex half-plane 
(the Hurwitz criterion). The condition D ~> 0 (where D is the discriminant of the polynomial f) is 
equivalent to the raots of the equation f = 0 being real, and if D > 0 they are all different. 

Inequalities (3.4) can be represented in a simple geometric form. If T < 0, the degree of instability 
is odd and gyroscopic stabilization is impossible. Hence, we will consider the case when T > 0 and put 
u = eft -v3, v = I~/-'~. The conditions of stability (3.4) then take the form 

o > 0 .  uv  >1, u 2 0 2 - 4 ( u 3 + v 3 ) + 1 8 u v - 2 7 > 0  

The corresponding; region in the plane of the parameters u, v is shown in Fig. 1 (it is shown hatched). 
Its boundary has one singular point u = v = 3, in the neighbourhood of which this curve looks like a 
semicubic parabola. Note that the condition for stability ctl] > "/is automatically satisfied by virtue of 
the condition that ,the discriminant D must be positive. 

Note that the conditions for the stability of the equilibrium x = 0 of a general gyroscopic system with 
three degrees of freedom (3.3) have the same form (3.4) except that the sum al + a2 + a3 must be 
added to the parameter ct. 
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4. T H E  E X T R E M A L  C R I T E R I O N  OF S T A B I L I T Y  

The condition for the stability of equilibrium can often be represented as the condition for an 
extremum of a certain function, which depends only on the position x. For example, if the potential 
energy P = (Ax, x)/2 has a strict minimum at the point x = 0, the equilibrium is stable. Conversely, if 
the function P + ([H, x], [H, x])/4 reaches a maximum at x = 0, the equilibrium is unstable [6]. Further 
results in this area can be found in the reviews [7, 8]. 

Proposition 1. I f , / >  0, the equilibrium x = 0 of system (3.3) is stable if and only if the quadratic form 
(Bx, x), where 

s = T/2 ct -2~ 

2oft ~ -21~ tx~+27T 

(4.1) 

has an absolute minimum at the point x = 0. 
In fact, by Sylvester's criterion, the quadratic form (BX, x) is positive definite when the diagonal minors 

of the matrix B are positive. It remains to verify that these conditions are identical with inequalities 
(3.4) when T > 0. 

Notes. 1. Conditions (3.4) guarantee that the roots of the characteristic polynomial f are pure imaginary and 
different. In the case of multiple roots the problem of the stability of equih'brium depends on the presence of Jordan 
ceils. However, multiple roots are only encountered in the exceptional case when D ffi 0. Conditions (3.4) are the 
criterion for the strong stability of the equilibrium x = 0: it remains stable for small changes in the coefficients of 
system (3.3). 

2. It can be shown that there is a whole family of quadratic forms which satisfy Proposition 1. The sym- 
metrical matrix (4.1) generates the simplest of these. However, it is difficult to give a clear mechanical inter- 
pretation to these forms. The possibility of extending Proposition 1 to the multidimensional case is discussed in 
Section 7. 

5. I N T E N S E  M A G N E T I C  F I E L D S  

If T = ala2a3 < 0, the degree of instability is odd and gyroscopic stabilization is impossible. We will 
consider the case when T > 0. We will fix the direction of the magnetic field H and increase its intensity 
I H I .  

Theorem 1. If the components of the magnetic field satisfy the inequality 

Z --- alH21 + a2H 2 + a3H 2 >O (5.1) 

the equilibrium of the charge is stable for fairly large values of I H [. If Z < 0, the equilibrium is unstable 
for large values of I H [. 

In fact, if inequality (5.1) is satisfied, we have 13 > 0 for fairly large values of [ H [. Since ct > 0, the 
first two inequalities in (3.4) are satisfied. In order to prove inequality D > 0 it is sufficient to note that 
the term ct~[3 ~ increases more rapidly than any other term as I H [ ~ **. If Z < 0, we have 13 < 0 for 
fairly large values of [ H I. So in this case the equilibrium is necessarily unstable. 

Notes. 1. Inequality (5.1) is also the criterion for the stability of the position of equilibrium of a general linear 
system with three degrees of freedom on which large gyroscopic forces act. 

2. If Z = 0 andA ~ 0, the equilibrium of the charge is unstable. In fact, in this case (taking (3.2) into account) 
the coefficient 13 = ala2 - (ax + a2) 2 < O. 

We can give the stability condition (5.1) an interpretation in terms of geometric probability (see [9]). We fix the 
electric field and we assume that the necessary condition for gyroscopic stabilization is satisfied: the degree of 
instability is even. This indicates that there are two negative numbers and one positive number among the numbers 
ab a2, a3. Suppose, for example, that at < 0, a2 ~< 0, a3 > 0. In three-dimensional Euclidean space R 3 -- {Ht, 112, 

z 2 2 2 //3} the cone Z = 0 intersects the unit sphere S = {H 1 + H 2 + /'~ 3 ffi 1}  along two ovals which divide it into 
three connected regions. The points S" of the two regions containing "poles'--points with coordinates 0, 0, + 1, 
satisfy condition (5.1). The ratio of the sum of the areas of these regions to the area S 2 (it is equal to 4x) is the 
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probability of stabilizing the unstable equilibrium by a randomly chosen magnetic field of greater intensity. The 
probability is equal to 

1 2x al +a 2 
[1-f(q~; a 1, a2)]dq~, f= l+alsin2~p+a2cos2q~) P=~'~ 0 

and is expressed in lerms of elliptic functions ofa]/a2. Assuming al/a2 = tg ct we obtain a function of one variable 
ot ¢ [0, rt/2]. Its graph (Fig. 2) is symmetrical about the point a = x/4, at whichp takes the value 1-3 -1/2 = 0.42 .... 
In the interval [z/4, 7¢2] the function p(a) increases, and its maximum value isp(~ / 2) = 1/2. Hence, the stabilization 
probability lies between the values 0.42... and 0.5. It is a minimum in the symmetrical case when al = a2, which 
was considered in Section 2. 

6. SOME G E N E R A L I Z A T I O N S  

We will consider the problem of the stability of the equilibrium of a linear system with n degrees of 
freedom, described by the equations 

x"+Fx+Ax=O, x E R n ;  F r = - F ,  At=A, d e t A ~ 0  (6.1) 

We can assume the matrixA to be diagonal. 
We replace F by ! ~  and assume that g is a fairly large positive number. We will investigate what 

conditions the matrices A and F must satisfy for the equilibrium x = 0 to be stable for large values of 
g. The stability was established in [10, 11] on the assumption that the matr ixA is negative (i.e. the 
potential energy P (x) = .(/Ix, x)/2 is negative-definite), while the matrix of the gyroscopic forces F is 
non-degenerate. Since F r = - F  and det F ¢ 0, n is even. In this case the degree of instability is equal 
to n and hence is even. In this case the degree of instability is equal to n and hence is even. Estimates 
of the values of the parameter I1 for which stability of the equilibrium x = 0 occurs were given in [11, 
12]. For odd n the matrix F is degenerate, and hence the results obtained in [10, 11] are inapplicable. 
When n = 3, Theorem 1 gives the stability criterion. 

Suppose ker F i.,; the kernel of the operator F, which is the set of all x e R ~ such that Fx = 0. Clearly 
ker F is a linear .,;ubspaee of I~. We can make the factor-space R~/ker F (see, for example, [13]) 
correspond to this; its elements are classes of vectors from R n, which differ by vectors from ker F. We 
know [13], that ~ / k e r  F has the structure of a vector space, and 

d imkerV+d imR n / k e r F = n ,  dimR n / k e r F = r a n k F  

Consequently, the dimension of the factor-space R~/ker FPOc0 is always even. 
Suppose C is a symmetric matrix. We will compare the following quadratic form with it 

(Cr'x, i x )  =- (FCI 'x ,  x), x ¢ R" (6.2) 

P 
0,5 
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Fig. 2. 
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The value of  this form does not change if we add to the vector x any vector of  the subspace ker F. The 
quadratic form (6.2) is of course correctly defined in the factor-space R~/ker F. 

Theorem 2. If the restriction on the potential energy (/Ix, x)/2 in the subspaee ker F is a positive- 
definite quadratic form, while the form (A-1Fx, Fx) --- (A-Iz, z) is negative-definite in R~/ker F, the 
equilibrium x = 0 is stable for fairly large values of the parameter Ix. 

We will consider the special ease when det F ~ 0. Then ker F = 0; and the first condition of Theorem 
2 can be omitted in view of its triviality. Suppose x = F-lz. Then the form (A-1Fx, Fx) = (A-Xz, z) will 
be negative-definite. Hence, it follows, in turn, that the potential energy (Az, z)/2 will also be negative- 
definite. Hence, Theorem 2 contains the result derived in [11] as a special ease (without estimates of  
the parameter Ix). 

Note. It is sufficient to verify the property that the quadratic form (A-1Fx, l"x) is negative-definite in a certain 
subspace ~ with dimension n--dim (ker F), transverse to the space ker F. 

A further consequence that we can derive from Theorem 2 is inequality (5.1) as the sufficient condition 
for gyroscopic stabilization. When n = 3 the kernel of the operator F ~ 0 is one-dimensional and consists 
of  vectors parallel to the vector (HI, He,/-/3). The value of the potential energy on this vector is Y.akH~2. 
Consequently, the first condition of  Theorem 2 gives inequality (5.1). Since T = ala2a3 > 0, then either 
ak > 0 or two of these numbers are negative while one is positive. In the first case the equilibrium x = 
0 is stable by Kelvin's theorem. We will consider the second ease; suppose, for example, ax < 0, a2 < 
0, a3 > 0. Since ~akH~ > 0, we have H 3 ~e 0. Of  coUI~Se, we can take ~ex3 = 0 plane as a two-dimensional 
subspace transverse to ker F. The value of the quadratic form (A-Tx,  Ix)  on the vector el = (1, 0, 0) 
from this plane is 

H~ / a 2 + H 2 l a 3 =(a2H ~ +a3H~)l(a2a3)<O 

since a2H~ + a3I-l] > -a lH 2 ~ 0 and a2a 3 < 0. It can similarly be proved that this form is negative in 
any basis vector e2 = (0, 1, 0). Hence, the second condition of  Theorem 2 is satisfied. 

Proof of  Theorem 2. In addition to the energy integral 

F = ( x ,  x ) / 2 + ( A x ,  x ) / 2  

system (6.1) also allows of the integral 

O = ( A - l x  ", x ' ) / 2 - ( F A - I x  ", x ) + ( ( E - F A - t F ) x ,  x ) / 2  

Here  E is the identity matrix. We replace F by IXF and consider the quadratic integral 

V = 2 F - 2 O I I X  ~ =(x ' ,  x ' )+(Ax,  x)-ix)~(A-IFx, Fx)+O(IX - ~ )  

By the conditions of Theorem 2 the form (A-1Fx, Fx) is non-positive and vanishes only in the subspace 
ker F, where the form (/Ix, x) is positive-definite. Consequently, for fairly large values of  IX the quadratic 
form Vwill be a positive-definite integral. By Lyapunov's theorem the state of equilibrium x = 0, i = 
0) is stable. 

We will indicate one more extension of condition (5.1) in the multidimensional case. Suppose ~j = 
-~i are the elements of the matrix of  the gyroscopic forces F ,A = diag(al, , an), o~ = Ya i ai ai,_2 

• , . o . . ° " "  , , 1 2 " . "  " 

Ti~_", where the summation is c a m e d  out  over all subscripts 11 < I2 < < In 2, not ~dentlcal w~th the 
l t n  . . . . . .  " ' "  - .  

subscripts i,,_1 < in. When n = 3, the quantity ct is identical gath the left-hand s,de of inequality (5.1). 

Propos/t/on 2. If cx < 0, the equilibrium x = 0 is unstable for fairly large values of IX. 
In fact, in the stable case all the coefficients of  the characteristic polynomial must be positive. The 

coefficient of X 2 differs from ~ by terms which depend only on ak. Hence, if ct < 0, this coefficient 
becomes negative for sufficiently large IX. 

Note. The inequality a > 0 is the criterion for strong stability only when n = 3. For n -- 4 we must add one more 
inequality to this condition, which relates the coefficients of the matrix of the gyroscopic forces F. 
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. 

Suppose 

T H E  G E N E R A L  F O R M  OF T H E  C O N D I T I O N S  OF S T A B I L I T Y  

fO? ) = ~?" +a~?"-%. . .+a .  (7.1) 

is the characteristic polynomial of the linear system (6.1) without multiple roots. The coefficients 
a l , . . . ,  0~ are polynomials of  at  and of the elements of the matrix F. The presence of multiple roots 
is equivalent to the discriminant D of polynomial (7.1) vanishing. 

The equilibriunl x = 0 is stable if and only if all the roots of the polynomialf  of the nth degree are 
real negative numbers. Consequently, the necessary condition for stability is that the inequalities 
a l  > 0 , . . . ,  an > 0 should be satisfied. We will assume these conditions to be satisfied. 

Suppose z l  . . . .  , zn a r e  simple roots of the equation f(z) = 0. We will put 

S k = Z  ~ + Z ~ + . . . + Z ~ ,  S 0 = t !  

The numbers st, ate expressed in terms of the coefficients ~ by the following Newton formulae 

S m +StN- I I~ l+ . . .+$10~m_l  + m { l  m =~ O, m ~ it 

$m + Sm-lO(I + ' "  +$ta-nO(n = O, Rtl > It 

Hence sl = --~1, $2 = 0~21 -- 2U'2, 53 ---- "0f31 4" 3¢tlCX, 2 - 3a3, • • . .  We will introduce the nth order symmetric 
matrix 

SO SI "'" Stt-I 

SI S 2 . . .  S n 
S =  

~n-I Sn "'" $2n-2 

and the quadratic form O(x) = (Sx, x). Note that D = det S. 

P r o p o s i t i o n  3. Suppose eta > 0 . . . . .  an > 0 and D ~e 0. The equilibrium x = 0 of system (6.1) is stable 
if and only if the fimction • has a strict minimum at the point x = 0. 

Proof. Suppose D ~e 0. Then the polynomial (7.1) does not have multiple roots. In this ease, the 
criterion for all the roots of the polynomialf  to be real is the condition for the matrix S to be positive- 
definite [14]. It remains to use the following result, which follows from Desearte's rule: the polynomial 
(7.1), without complex roots, has n negative roots if and only if all its coefficients are positive. 

Notes. 1. Proposition 1 does not follow from Proposition 2, since the condition for the matrix (4.1) to be positive- 
definite includes the coefficients a and 13 being positive. 

2. The characteristic polynomial of an autonomous Hamiltonian system, linearized in the neighbourhood of the 
equilibrium position, contains only even powers and hence has the form (7.1). Consequently, the conditions for 
the stability of the equilibria of Hamiltonian systems with n degrees of freedom reduces to 2n-1 algebraic inequalities. 
Of course, not all of these are independent. 

Examp/e. When n = 3 we must add the following two conditions to the inequalities a > 0, 1~ > 0, ? > 0 

I s s] =2(a2-3[~) >0, D=detS>0 
51 $2 

Note that the first of these is a consequence of the second. Hence, the conditions for strong stability of the 
equilibrium position reduces to the already well-known four inequalities: a > 0, 1~ > 0, ? > 0, D > 0. 
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